
Atelier de programmation 9 à 11 ans

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

1. Qu’est-ce qu’un ordinateur ?
Qu’est-ce que programmer ?

2. Introduction à la programmation : hour of code

1° partie : présentation des concepts (ordinateur et programmation)
 atelier déconnecté : la programmation orale, sans ordinateur
 http://voyageursducode.fr/ressources/fiches-activites/programmation-orale.html

2° partie : hour of code
 https://studio.code.org/s/mc/stage/1/puzzle/1

Jour 1 : Hour of code (Minecraft)

http://voyageursducode.fr/ressources/fiches-activites/programmation-orale.html
http://voyageursducode.fr/ressources/fiches-activites/programmation-orale.html
http://voyageursducode.fr/ressources/fiches-activites/programmation-orale.html
http://voyageursducode.fr/ressources/fiches-activites/programmation-orale.html
http://voyageursducode.fr/ressources/fiches-activites/programmation-orale.html
https://studio.code.org/s/mc/stage/1/puzzle/1

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

1. Décomposer une recette courante en opérations élémentaires qui permettent
d’arriver au résultat attendu,

2. Mettre au point l’algorithme en le déroulant pas à pas,

3. Discuter :

• des différents types de blocs utilisés

• des tests : booléens
oui ou non, vrai ou faux

• des variables,

• des évènements,
correspondant à
des programmes
multiples et
simultanés
(avec la possibilité de
conflits entre programmes,
ex : si on n’a qu’une plaque
et plusieurs plats …)

Jour 2 : l’algorithme pour « faire des pates »

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

1. Créer le circuit

2. Initialiser avec le drapeau vert

3. Faire avancer la voiture

4. Tester si elle sort ou si elle gagne

Ressource : https://youtu.be/bgswFXqYsNE

1° dessiner

– dessines le circuit et l’arrivée
sur un fond vert

2° programmer

– Mets la voiture à la bonne taille et au bon
endroit au démarrage (drapeau vert),

– Fais avancer la voiture en direction
du pointeur de la souris lorsque
la touche espace est enfoncée,

– Si la voiture touche le vert,
renvoies au départ,

– Si la voiture touche le bleu,
dis "j’ai gagné" et arrêtes le programme.

Jour 2 : Créer un jeu de voiture – la base

https://scratch.mit.edu/projects/117130566/

https://youtu.be/bgswFXqYsNE
https://scratch.mit.edu/projects/117130566/

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Jours 3 et 4 : Exercices

1. Contrôler la vitesse avec une variable
 https://scratch.mit.edu/projects/117130460/

2. Gérer les vies et la fin du jeu avec une variable et des tests
 https://scratch.mit.edu/projects/117130405/

3. Faire avancer la voiture en continu avec une boucle infinie et

l’arrêter si elle touche le pointeur avec une boucle conditionnelle
 https://scratch.mit.edu/projects/117130330/

4. Faire la même chose avec un test
 https://scratch.mit.edu/projects/117130048/

5. Créer un obstacle intermittent sur la piste
et ajouter des sons
 https://scratch.mit.edu/projects/117081941/

6. Utiliser les procédures pour simplifier et améliorer le programme
 https://scratch.mit.edu/projects/117082690/

7. Compter les tours et gagner au bout de 3 https://scratch.mit.edu/projects/117097449/

8. Généraliser les procédures https://scratch.mit.edu/projects/117102737/

9. Créer un 2° niveau : messages et configuration https://scratch.mit.edu/projects/117118979/

https://scratch.mit.edu/projects/117130566/

https://scratch.mit.edu/projects/117130460/
https://scratch.mit.edu/projects/117130405/
https://scratch.mit.edu/projects/117130330/
https://scratch.mit.edu/projects/117130048/
https://scratch.mit.edu/projects/117081941/
https://scratch.mit.edu/projects/117082690/
https://scratch.mit.edu/projects/117097449/
https://scratch.mit.edu/projects/117102737/
https://scratch.mit.edu/projects/117118979/
https://scratch.mit.edu/projects/117130566/

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 1 sur les variables (vitesse)

Attention : au mois de juillet 2016, la version française de Scratch
comprend une erreur sur le libellé de
la commande « remplacer … par … »
qui doit se lire « ajouter à … la quantité … »
cf. aide de cette commande

Objectif :

1. contrôler la vitesse avec une variable,

2. augmenter la vitesse pendant le jeu.

1° partie :

1. définis la variable vitesse

2. Mets sa valeur à 4 au démarrage

3. Dans le bloc avancer, remplaces le chiffre
par la variable

4. Essaies : la vitesse est affichée ?

2° partie : modifies la valeur de la variable

1. Ajoutes un évènement sur flèche haut

2. Ajoutes 1 à la variable vitesse
avec un opérateur + et remplace la valeur
précédente de la vitesse

3. Ajoutes un test pour limiter la vitesse à 10

4. Essaies et fais pareil pour réduire la vitesse
avec la flèche bas

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 1 sur les variables (vitesse)

Objectif :

1. contrôler la vitesse avec une variable,

2. augmenter la vitesse pendant le jeu.

1° partie :

1. définis la variable vitesse

2. Mets sa valeur à 4 au démarrage

3. Dans le bloc avancer, remplaces le
chiffre par la variable

4. Essaies : la vitesse est affichée ?

2° partie : modifies la valeur de la variable

1. Ajoutes un évènement :
clique sur flèche haut

2. Ajoutes 1 à la variable vitesse
avec un opérateur +
et remplace la valeur précédente de
la vitesse

3. Essaies et fais pareil pour réduire la
vitesse avec la flèche bas

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 1 sur les variables (vitesse)

Objectif :

1. contrôler la vitesse avec une variable,

2. augmenter la vitesse pendant le jeu.

1° partie :

1. définis la variable vitesse

2. Mets sa valeur à 4 au démarrage

3. Dans le bloc avancer, remplaces le
chiffre par la variable

4. Essaies : la vitesse est affichée ?

2° partie : modifies la valeur de la variable

1. Ajoutes un évènement :
clique sur flèche haut

2. Ajoutes 1 à la variable vitesse
avec un opérateur +
et remplace la valeur précédente de
la vitesse

3. Essaies et fais pareil pour réduire la
vitesse avec la flèche bas

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 2 sur les variables et tests (vies)

Objectif :

1. Définir un nombre de vies au départ,

2. Retirer une vie à chaque fois que la
voiture redémarre (sortie de route),

3. Afficher « Game over » quand il n’y a
plus de vies

Réalisation :

1. définis la variable vies et mets sa
valeur à 3 au démarrage

2. Ajoutes un costume « Game Over »
à la scène

3. quand la voiture touche le vert,
retires une vie,
et si le nombre de vies est égal à 0,
affiches « Game Over » et stop tout

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 3 : sur les boucles et boucles conditionnelles

Objectif :

1. La voiture doit continuer à avancer même
si on n’appuie plus sur la touche espace.

2. Elle doit s’arrêter si elle touche le pointeur
de la souris

1° partie :

Pour que la voiture avance en
permanence, mets la commande avancer
dans une boucle infinie.
Penses à ajouter une commande « stop ce
script » pour que la voiture s’arrête si elle
retourne au point de départ.

2° partie :

Pour que la voiture s’arrête, lorsque la
voiture touche le pointeur de la souris,
utilises une condition pour sortir de la
boucle lorsque le capteur détecte que la
voiture touche le pointeur souris.

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

1. La voiture doit continuer à avancer même
si on n’appuie plus sur la touche espace.

2. Elle doit s’arrêter si elle touche le pointeur
de la souris

1° partie :

Pour que la voiture avance en
permanence, mets la commande avancer
dans une boucle infinie.
Penses à ajouter une commande « stop ce
script » pour que la voiture s’arrête si elle
retourne au point de départ.

Exercice 3 : sur les boucles et boucles conditionnelles

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

1. La voiture doit continuer à avancer même
si on n’appuie plus sur la touche espace.

2. Elle doit s’arrêter si elle touche le pointeur
de la souris

1° partie :

Pour que la voiture avance en
permanence, mets la commande avancer
dans une boucle infinie.
Penses à ajouter une commande « stop ce
script » pour que la voiture s’arrête si elle
retourne au point de départ.

Exercice 3 sur les boucles et boucles conditionnelles

2° partie :

Pour que la voiture s’arrête, lorsque la
voiture touche le pointeur de la souris,
utilises une condition pour sortir de la
boucle lorsque le capteur détecte que la
voiture touche le pointeur souris.

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 4 sur branchement si/sinon et opérateurs logiques

Objectif :

1. Pour arrêter la voiture lorsqu’elle touche le
pointeur de la souris, remplacer la solution
précédente par un test avant d’avancer

1° version :

Au lieu de mettre la condition dans la boucle,
testes avec un bloc si/sinon :

– Si le pointeur est touché : on ne fait rien

– Sinon : orientation vers le curseur et on avance

2° version :

– Comme la branche "Si" ne sert à rien on peut
l’éviter, mais il faut inverser la valeur du test
avec l’opérateur ,
ça inverse le résultat

Nota : l’exercice permet d’illustrer qu’il
 y a toujours deux branches possibles dans
 un test, même si une seule est utilisée.

si/sinon

si

opérateur d’inversion logique

Condition
dans la boucle

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

• Mettre un obstacle au milieu de la route
(il doit apparaitre de façon intermittente,
si la voiture le touche elle perd une vie et
retourne au départ).

• Jouer un son quand la voiture sort de la
route et un autre quand elle touche
l’obstacle

Script de l’obstacle Script de la voiture

Exercice 5 : Obstacle et son (exercice défini en séance)

Obstacle au milieu de la route :

1. créer un lutin « obstacle »

– le mettre à la taille et au bon endroit au départ

– le faire apparaitre et disparaitre dans une boucle
infinie, avec un temps d’attente

2. Dans le programme de la voiture,

– ajouter un son si la voiture sort de la route

– si la voiture touche l’obstacle, jouer un son et faire
pareil que pour la sortie de route : retirer une vie et
renvoyer la voiture au départ.

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Objectif :

• Montrer que l’on peut simplifier
écrire une seule fois les mêmes opérations.

• Expliquer comme abstraction

Réalisation :

• On remplace les deux gros
paquets de blocs identiques,
de redémarrage par un nouveau
bloc qui fait la même
chose.
C’est un bloc « procédure »

• Attention, il ne faut pas
mettre stop ce script
dans la procédure
(car une procédure peut être
appelée depuis plusieurs scripts.

stop ce script ne marche pas dans une procédure)

Exercice 6 : procédures et abstraction

+

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 7 tests logiques dynamiques (compter les tours)

Objectif :

• Compter les tours 3,2,1, et dire « on a gagné » quand le nombre vaut 0

Réalisation :

• Créer la variable initialisée à 3
et la variable initialisée à oui

• Dans la boucle infinie

– Si la voiture touche la ligne d’arrivée, alors

• Si = oui,
 mettre à non
 retirer 1 à
 et si = 0 passer à l’écran gagné et applaudir

– Sinon mettre à oui (on a dépassé la ligne, la prochaine fois on pourra décompter un tour)

Nature de la difficulté :

• La voiture touche la ligne d’arrivée en continu
(plusieurs fois), il ne faut compter qu’un seul tour,

• C’est un problème de logique dynamique, l’action
à prendre dépend de l’action précédente

 Sujet à éviter de traiter en semaine 1

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 8 : abstraction / généralisation des procédures

Objectif :

1. Dégager les principales fonctions de la voiture et les mettre en procédures,

2. Faire apparaitre la structure générale du programme sous forme de pseudo-code,

3. Discuter des notions d’abstraction et de conception.

Extraction : des procédures

1. "redémarrer" (existe déjà)

2. "avancer voiture"

3. "arrivée touchée ?"

4. "gagné"

5. "perdu«

Discussion : abstraction et conception

Boucle principale

avancer

Sortie de route ?

Obstacle touché ?

Arrivée touchée ?

redémarrer
perdu

gagné

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 9 algorithme multi-niveaux (1/3)

Objectif :

Réaliser un 2° niveau de jeu après avoir gagné le premier

Difficulté :

1. le programme est le même pour tous les niveaux. TOUTEs les actions qui dépendent
du niveau doivent être paramétrées (de préférence à l’initialisation),

2. Il faut distinguer ce qui doit être fait au début du jeu et au début de chaque niveau

3. La plupart des scripts, dont ceux en boucle infinie (ex : l’obstacle intermittent) doivent
être interrompus et réinitialisés

Solution adoptée :

Pour chaque niveau on va définir :

• les coordonnées et l’orientation de démarrage de la voiture par des variables,

• les coordonnées et la taille de l’obstacle.

La préparation de chaque niveau se fait à réception du message "préparerNiveau"

Le démarrage se fait à réception du message "démarrerNiveau"

Ces messages sont envoyés

1. au départ (drapeau vert) pour le niveau 1,

2. et dans la procédure appelée quand on gagne un niveau.

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 9 : multi-niveau (2/3)

Réalisation :

1. Crées un arrière-plan "niveau2" (avec exactement la même couleur d’herbe et d’arrivée)

2. Crées la variable niveau et une variable
au drapeau vert initialises ces variables
et envoies un message de préparation
puis de démarrage du niveau

3. Crées les variables de démarrage de la voiture , et
(elles vont changer à chaque niveau)
et dans la procédure redémarrer, reviens aux
coordonnées et l’orientation définies par ces variables

4. Dans la procédure "gagné" appelée à la fin de chaque niveau,
Si le niveau est inférieur au nombre de niveaux,
 ajouter 1 au niveau et envoyer les mêmes messages
Sinon, gagner comme avant

5. Ensuite, il faut dire ce que doit faire chaque lutin quand
il reçoit les messages préparerNiveau
 et démarrerNiveau

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Exercice 9 : multi-niveau (3/3)

1. Réponses aux messages pour la scène
(on peut supprimer l’évènement drapeau vert)

2. Réponses aux messages pour la voiture

3. Réponses aux messages pour l’obstacle
 (on peut supprimer l’évènement drapeau vert)

Nota :
il est indispensable de séparer la boucle infinie de la
réception du message de préparation. Sinon, le message
n’est jamais reçu, car la boucle est en fonctionnement
continu

Scripts à réception des messages préparerNiveau et démarrerNiveau

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Résultat (scripts de la voiture)

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Résultat (scripts de la scène et de l’obstacle)

Scripts de la scène Scripts de l’obstacle

Arrière-Plans

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Résultats intermédiaires des enfants

Les planches précédentes correspondent à la réalisation de toutes les idées émises par tous
les enfants au cours de l’atelier. C’est plutôt un guide pour les animateurs.

Pendant l’atelier, les enfants ont commencé par un tronc commun correspondant

• au dessin du circuit,

• à l’initialisation de la voiture et son déplacement,

• au redémarrage en cas de sortie de route,

• au comptage des vies.

Puis chaque enfant a développé son jeu dans la direction qu’il souhaitait avec

• des obstacles de différents types,

• le décompte des tours,

• la gestion des cas où on gagne ou perd,

• la création d’un 2° niveau avec des difficultés différentes.

Des résultats obtenus entre le début et la fin du 4° jour de l’atelier sont illustrés ci-après.

BRAVO ! Ils sont vraiment très forts

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Oussem (point le 22/07 à 17:36 fin du 4° jour)

5 lutins et 3 arrière-plans :

2 obstacles auxquels la sorcière doit échapper

Le chapeau intermittent
La voiture qui va vers les boutons
(déclenchement quand la sorcière passe sur ces boutons)

Programme

41 blocs, 4 scripts, 1procédure pour la sorcière
11 blocs, 2 scripts pour l’obstacle chapeau
11 blocs, 4 scripts pour l’obstacle voiture

1 procédure, 2 boucles, 10 tests, 2 variables
7 tests capteurs, 3 tests mathématiques (>,<)
1 opérateur logique (non)

Mode de développement

Guidé pour la sorcière, sa vitesse et ses vies
Créatif de groupe pour le chapeau
Créatif individuel pour la voiture et les 2 boutons

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

Nilan (point le 22/07 à 16:14 – début 4° jour)

3 lutins et 2 arrière-plans :

2 obstacles auxquels la voiture doit échapper

2 chapeaux intermittents (codage en cours de séance)
Codage du nombre de tours : début

Programme

36 blocs, 4 scripts pour la voiture
6 blocs, 1 script pour chaque obstacle
 (codage en cours de séance)

4 boucles, 5 tests, 3 variables
2 tests capteurs, 3 tests mathématiques (>,<)

Mode de développement

Guidé pour la voiture, sa vitesse et ses vies
Créatif de groupe pour le chapeau
Créatif individuel pour le nombre de tours

Scripts de la voiture

Scripts des obstacles
(en cours de codage)

Notes de Pierre Huguet – Atelier d’initiation à la programmation – bibliothèque Vaclav Havel -juillet 2016

O’Neil (point le 22 ou 23/07)

1 lutins et 2 arrière-plans (pour 2 niveaux) :

Les obstacles auxquels le chat volant doit échapper

Ces obstacles sont définis par couleur
(plutôt que comme des lutins)
2 niveaux de jeu avec 2 arrière-plans et
2 conditions initiales

Programme

36 blocs, 4 scripts pour le chat volant

1 boucle, 7 tests, 2 variables
5 tests capteurs, 2 tests mathématiques (>,<)

Mode de développement

Guidé pour le chat, sa vitesse et ses vies
Créatif individuel pour le design et le 2° niveau

(la difficulté réside ici dans le multi-niveau)

